חAmIBIA UTIVERSITY
OF SCIEПCE AחD TECHחOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: APP601S	COURSE NAME: ANALYTICAL PRINCIPLES AND
PRACTICE	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR JULIEN LUSILAO
MODERATOR:	PROF OMOTAYO AWOFOLU

INSTRUCTIONS

1. Answer ALL the questions in the answer book provided.
2. Write and number your answers clearly.
3. All written work MUST be done in blue or black ink.

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

List of useful tables, formulas and constants

THIS QUESTION PAPER CONSISTS OF 10 PAGES (Including this front page and attachments)

Question 1: Multiple Choice Questions

Choose the best possible answer for each question.
1.1 An analytical balance is capable of measuring mass to the nearest 0.1 mg . Which measurement correctly reflects the precision which can be obtained when using this balance?
(A) 2.06 g
(B) 2.060 g
(C) 2.0600 g
(D) 2.06000 g
1.2 A mass of 5.4 grams of Al reacts with an excess of CuCl_{2} in solution:

$$
3 \mathrm{CuCl}_{2}+2 \mathrm{Al} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{Cu}
$$

What mass of solid copper (Cu) is produced?
(A) 0.65 g
(B) 8.5 g
(C) 13 g
(D) 19 g
1.3 NAMPOL needs a more reliable method than the breathalyser test for detecting the presence and the amount of alcohol in suspected drunk drivers. Solving this problem requires
(A) Qualitative analysis
(B) Quantitative analysis
(C) Fundamental analysis
(D) All of the above
1.4 A guideline specifying how procedure must be followed is called
(A) An analytical approach
(B) A protocol
(C) A technique
(D) A method
1.5 A method that is relatively free from chemical interferences is called
(A) Tough
(B) Rugged
(C) Robust
(D) All of the above
1.6 The middle value of a series of data ordered from the smallest to the largest value is called
(A) Average
(B) Median
(C) Arithmetic mean
(D) Geometric mean
$1.7 \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{aq})+3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$
If 54.0 grams of water are mixed with excess magnesium nitride, then how many grams of ammonia are produced?
(A) 1.00
(B) 17.0
(C) 51.0
(D) 153
1.8 In the reaction: $2 \mathrm{HCO}_{3}{ }^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{3}{ }^{2-}$
the hydrogen carbonate ion, $\mathrm{HCO}_{3}{ }^{-}$is functioning as
(A) a Bronsted-Lowry acid only.
(B) a Bronsted-Lowry base only.
(C) both a Bronsted-Lowry acid and a Bronsted-Lowry base.
(D) neither a Bronsted-Lowry acid nor a Bronsted-Lowry base.
1.9 The solubility product constant, $K_{\text {sp }}$, of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ is 1.8×10^{-18}. What is the molar solubility of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ in water? Neglect any hydrolysis.
(A) 1.6×10^{-5}
(B) 8.4×10^{-7}
(C) 1.3×10^{-9}
(D) 4.5×10^{-19}
1.10 The balanced equation for the reduction of the nitrate anion by the $\mathrm{Fe}(\mathrm{II})$ ion in an acidic solution is
(A) $3 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(B) $\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+8 \mathrm{H}+(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}$ (I)
(C) $2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{NO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(D) $3 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 3 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}+(\mathrm{aq})$

Question 2

2.1 To test a spectrophotometer's accuracy a solution of $60.06 \mathrm{ppm}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in 5.0 mM $\mathrm{H}_{2} \mathrm{SO}_{4}$ is prepared and analysed. This solution has an expected absorbance of 0.640 at 350.0 nm in a $1.0-\mathrm{cm}$ cell when using $5.0 \mathrm{mM} \mathrm{H}_{2} \mathrm{SO}_{4}$ as a reagent blank. Several aliquots of the solution produce the following absorbance values.
0.639
0.638
0.640
0.639
0.640
0.639
0.638
(a) Calculate the mean and standard deviation of the measured absorbance values.
(b) Determine whether there is a significant difference between the experimental mean and the expected value at $a=0.01$ (i.e. $P=99 \%$).
2.2 One way to check the accuracy of a spectrophotometer is to measure absorbencies for a series of standard dichromate solutions obtained from the National Institute of Standards and Technology. Absorbencies (A) are measured at 257 nm and compared to the accepted values. The results obtained when testing a newly purchased spectrophotometer are shown below.

Standard	Measured A	Expected A
1	0.2872	0.2871
2	0.5773	0.5760
3	0.8674	0.8677
4	1.1623	1.1608
5	1.4559	1.4565

Determine if the tested spectrophotometer is accurate at $\mathrm{a}=0.05$.

Question 3

3.1 A solution containing 3.47 mM of analyte and 1.72 mM of standard gave peak areas of 3,473 and 10,222 , respectively, in a chromatographic analysis. Then 1.00 mL of 8.47 mM standard was added to 5.00 mL of unknown solution, and the mixture was diluted to 10.0 mL . This solution gave peak areas of 5428 and 4431 for the analyte and standard, respectively.
(a) Calculate the response factor for the analyte.
(b) Find the concentration of the standard in the 10.0 mL of mixed solution.
(c) Find the analyte concentration of in the 10.0 mL of mixed solution.
(d) Find the analyte concentration in the original unknown.
3.2 The concentration of phenol in a water sample is determined by separating the phenol from non-volatile impurities by steam distillation, followed by reacting with 4-aminoantipyrine and $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ at pH 7.9 to form a colored antipyrine dye. A phenol standard with a concentration of 4.00 ppm has an absorbance of 0.424 . A water sample is steam distilled and a $50.00-\mathrm{mL}$ aliquot of the distillate is placed in a $100-\mathrm{mL}$ volumetric flask and diluted to volume with distilled water. The absorbance of this solution is found to be 0.394 .
(a) What is the concentration of phenol (in parts per million) in the water sample?
(b) What calibration method has been used here? Explain.
(c) Briefly explain your choice of the calibration method.

Question 4

4.1 For the following unbalanced reaction at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
\mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-} & \rightleftharpoons \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}(\text { acidic medium }) \\
\left(E_{\mathrm{Fe} 3+/ \mathrm{Fe} 2+}^{0}\right. & \left.=0.771 \mathrm{~V} ; E_{\mathrm{MnO4}-/ \mathrm{Mn2+}}^{0}=1.51 \mathrm{~V}\right)
\end{aligned}
$$

(a) Write the balanced oxidation and reduction half reactions as well as the overall reaction.
(b) Calculate the standard potential of the reaction.
(c) Calculate the equilibrium constant of the reaction.
(d) Calculate the potential under the following conditions: $\left[\mathrm{Fe}^{2+}\right]=0.50 \mathrm{M}$, $\left[\mathrm{Fe}^{3+}\right]=0.10 \mathrm{M},\left[\mathrm{MnO}_{4}^{-}\right]=0.025 \mathrm{M},\left[\mathrm{Mn}^{2+}\right]=0.015 \mathrm{M}$, and a pH of 7.00 .
4.2 Calculate the pH of the solution that results from the addition of 0.040 moles of HNO_{3} to a buffer made by combining 0.500 L of $0.380 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\left(\mathrm{~K}_{\mathrm{a}}=1.30 \times 10^{-5}\right)$ and 0.500 L of $0.380 \mathrm{M} \mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$. Assume addition of the nitric acid has no effect on volume.
4.3 Calculate the ionic strength of a 0.025 M solution of CuCl_{2}

Question 5

5.150 .0 mL of 0.0400 M formic acid ($\mathrm{HCOOH}, K_{a}=1.80 \times 10^{-4}$) was titrated with 0.120 M NaOH .
(a) Write the balanced reaction of the titration.
(b) calculate the volume of added titrant at the equivalence point.
(c) Calculate the pH after addition of the following volumes of the titrant
(i) 0.0 mL
(ii) 10.0 mL
(iii) 20.0 mL
5.225 .0 mL of $0.01 \mathrm{M} \mathrm{V}^{2+}$ is titrated using $0.01 \mathrm{M} \mathrm{Ce}^{4+}$ $\left(E^{0}{ }^{V}+/ \mathrm{V} 2+=-0.255 \mathrm{~V} ; E^{0}{ }_{\text {ce4+ }} /\right.$ Ce3 $\left.+=+1.72 \mathrm{~V}\right)$.
(a) Write the two redox half-reactions, the overall reaction and the potential (E) expressions for both redox half-reactions.
(b) Calculate the potential of the titration after addition of
(i) $15.0 \mathrm{~mL} \mathrm{Ce}{ }^{4+}$
(ii) $25.0 \mathrm{~mL} \mathrm{Ce}{ }^{4+}$
5.3 (a) Define gravimetry.
(b) List the different types of gravimetric methods.

Data Sheet

$$
\begin{aligned}
& t_{\text {calculated }}=\frac{|\bar{x}-\mu|}{s} \sqrt{N} \quad t_{\text {calculated }}=\frac{\bar{d}}{s_{d}} \sqrt{n} \\
& s_{\text {pooled }}=\sqrt{\frac{\mathrm{s}_{\mathrm{a}}^{2}\left(N_{\mathrm{a}}-1\right)+\mathrm{s}_{\mathrm{b}}^{2}\left(N_{\mathrm{b}}-1\right)+\ldots \ldots \ldots}{N_{\mathrm{a}}+N_{\mathrm{b}}+\ldots \ldots . N_{\text {sets of data }}}} \quad t_{\text {calculated }}=\frac{\left|\bar{x}_{\mathrm{a}}-\bar{x}_{\mathrm{b}}\right|}{s_{\text {pooled }}} \times \sqrt{\frac{\mathrm{n}_{\mathrm{a}} \times \mathrm{n}_{\mathrm{b}}}{\mathrm{n}_{\mathrm{a}}+\mathrm{n}_{\mathrm{b}}}} \\
& \quad \mu=\overline{\mathrm{x}} \pm \frac{\mathrm{ts}}{\sqrt{\mathrm{n}}}
\end{aligned}
$$

Confidence

degrees Freedom	50\%	90\%	95\%	99\%
1	1.000	6.314	12.706	63.656
2	0.816	2.920	4.303	9.925
3	0.765	2.353	3.182	5.841
4	0.741	2.132	2.776	4.604
5	0.727	2.015	2.571	4.032
6	0.718	1.943	2.447	3.707
7	0.711	1.895	2.365	3.499
8	0.706	1.860	2.306	3.355
9	0.703	1.833	2.262	3.250
10	0.700	1.812	2.228	3.169
11	0.697	1.796	2.201	3.106
12	0.695	1.782	2.179	3.055
13	0.694	1.771	2.160	3.012
14	0.692	1.761	2.145	2.977
15	0.691	1.753	2.131	2.947
16	0.690	1.746	2.120	2.921
17	0.689	1.740	2.110	2.898
18	0.688	1.734	2.101	2.878
19	0.688	1.729	2.093	2.861
20	0.687	1.725	2.086	2.845
21	0.686	1.721	2.080	2.831
22	0.686	1.717	2.074	2.819
23	0.685	1.714	2.069	2.807
24	0.685	1.711	2.064	2.797
25	0.684	1.708	2.060	2.787
26	0.684	1.706	2.056	2.779
27	0.684	1.703	2.052	2.771
28	0.683	1.701	2.048	2.763
29	0.683	1.699	2.045	2.756
30	0.683	1.697	2.042	2.750
31	0.682	1.696	2.040	2.744
32	0.682	1.694	2.037	2.738
33	0.682	1.692	2.035	2.733
34	0.682	1.691	2.032	2.728
35	0.682	1.690	2.030	2.724

Critical Values for the Rejection Quotient

	$Q_{\text {crit }}$ (Reject if $Q_{\text {exp }}>Q_{\text {crit }}$		
N	90% Confidence	95% Confidence	99% Confidence
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

$N=$ number of observations

F(0.05, onum, odenom) for a Two-Tailed F-Test													
onum \Rightarrow oden \Downarrow	1	2	3	4	5	6	7	8	9	10	15	20	∞
1	647.8	799.5	864.2	899.6	921.8	937.1	948.2	956.7	963.3	968.6	984.9	993.1	1018
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.43	39.45	39.50
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.25	14.17	13.90
4	12.22	10.65	9.979	9.605	9.364	9.197	9.074	8.980	8.905	8.444	8.657	8.560	8.257
5	10.01	8.434	7.764	7.388	7.146	6.978	6.853	6.757	6.681	6.619	6.428	6.329	6.015
6	8.813	7.260	6.599	6.227	5.988	5.820	5.695	5.600	5.523	5.461	5.269	5.168	4.894
7	8.073	6.542	5.890	5.523	5.285	5.119	4.995	4.899	4.823	4.761	4.568	4.467	4.142
8	7.571	6.059	5.416	5.053	4.817	4.652	4.529	4.433	4.357	4.259	4.101	3.999	3.670
9	7.209	5.715	5.078	4.718	4.484	4.320	4.197	4.102	4.026	3.964	3.769	3.667	3.333
10	6.937	5.456	4.826	4.468	4.236	4.072	3.950	3.855	3.779	3.717	3.522	3.419	3.080
11	6.724	5.256	4.630	4.275	4.044	3.881	3.759	3.644	3.588	3.526	3.330	3.226	2.883
12	6.544	5.096	4.474	4.121	3.891	3.728	3.607	3.512	3.436	3.374	3.177	3.073	2.725
13	6.414	4.965	4.347	3.996	3.767	3.604	3.483	3.388	3.312	3.250	3.053	2.948	2.596
14	6.298	4.857	4.242	3.892	3.663	3.501	3.380	3.285	3.209	3.147	2.949	2.844	2.487
15	6.200	4.765	4.153	3.804	3.576	3.415	3.293	3.199	3.123	3.060	2.862	2.756	2.395
16	6.115	4.687	4.077	3.729	3.502	3.341	3.219	3.125	3.049	2.986	2.788	2.681	2.316
17	6.042	4.619	4.011	3.665	3.438	3.277	3.156	3.061	2.985	2.922	2.723	2.616	2.247
18	5.978	4.560	3.954	3.608	3.382	3.221	3.100	3.005	2.929	2.866	2.667	2.559	2.187
19	5.922	4.508	3.903	3.559	3.333	3.172	3.051	2.956	2.880	2.817	2.617	2.509	2.133
20	5.871	4.461	3.859	3.515	3.289	3.128	3.007	2.913	2.837	2.774	2.573	2.464	2.085
∞	5.024	3.689	3.116	2.786	2.567	2.408	2.288	2.192	2.114	2.048	1.833	1.708	1.000

Physical Constants

Gas constant	R	$=8.315 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
		$=8.315 \mathrm{kPa} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
		$=8.315 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
		$=8.206 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Boltzmann constant	k	$=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Planck constant	h	$=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~K}^{-1}$
Faraday constant	F	$=9.649 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	L or N_{A}	$=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Speed of light in vacuum	c	$=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Mole volume of an ideal gas	V_{m}	$=22.41 \mathrm{~L} \mathrm{~mol}^{-1}$ (at 1 atm and 273.15 K)
$=22.71 \mathrm{~L} \mathrm{~mol}^{-1}$ (at 1 bar and 273.15 K)		
Elementary charge	e	$=1.602 \times 10^{-19} \mathrm{C}$
Rest mass of electron	m_{e}	$=9.109 \times 10^{-31} \mathrm{~kg}$
Rest mass of proton	m_{p}	$=1.673 \times 10^{-27} \mathrm{~kg}$
Rest mass of neutron	m_{n}	$=1.675 \times 10^{-27} \mathrm{~kg}$
Permitivity of vacuum	ε_{0}	$=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}\left(\right.$ or $\mathrm{F} \mathrm{m}^{-1}$)
Gravitational acceleration	g	$=9.807 \mathrm{~m} \mathrm{~s}^{-2}$

Conversion Factors

1 W	$=1 \mathrm{~J} \mathrm{~s}^{-1}$
1J	$=0.2390 \mathrm{cal}=1 \mathrm{~N} \mathrm{~m}=1 \mathrm{VC}$
	$=1 \mathrm{~Pa} \mathrm{~m}{ }^{3}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
1 cal	$=4.184 \mathrm{~J}$
1 eV	$=1.602 \times 10^{-19} \mathrm{~J}$
1 L atm	$=101.3 \mathrm{~J}$
1 atm	$\begin{aligned} = & 1.013 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}=1.013 \times 10^{5} \mathrm{~Pa}= \\ & 760 \mathrm{mmHg} \end{aligned}$
1 bar	$=1 \times 10^{5} \mathrm{~Pa}$
1 L	$=10^{-3} \mathrm{~m}^{3}=1 \mathrm{dm}^{3}$
1 Angstrom	$=1 \times 10^{-10} \mathrm{~m}=0.1 \mathrm{~nm}=100 \mathrm{pm}$
1 micron (μ)	$=10^{-6} \mathrm{~m}=1 \mu \mathrm{~m}$
1 Poise	$=0.1 \mathrm{Pas}=0.1 \mathrm{~N} \mathrm{sm}^{-2}$
1 ppm	$=1 \mu \mathrm{~g} \mathrm{~g}^{-1}=1 \mathrm{mg} \mathrm{kg}^{-1}$

$=1 \mathrm{mg} \mathrm{L}^{-1}$ (dilute aqueous solutions only)

$$
\frac{S_{\text {samp }}}{C_{\mathrm{A}}}=\frac{S_{\text {spike }}}{C_{\mathrm{A}} \frac{V_{\mathrm{o}}}{V_{\mathrm{o}}+V_{\text {std }}}+C_{\text {std }} \frac{V_{\text {std }}}{V_{\mathrm{o}}+V_{\text {sdd }}}}
$$

5	6	7	8	9	10
B	C	N	0	F	Ne
10.811	12.011	14.007	15.999	18.998	20.179
13	14	15	16	17	18
Al	Si	P	S	Cl	Ar
26.982	28.086	30.974	32.06t	35.453	39.948
31	32	33	34	35	36
Ga	Ge	As	Se	Br	Kr
69.723	72.61	74.922	78.96	79.904	83.80
49	50	51	52	53	54
In	Sn	Sb	Te	I	Xe
114.82	118.71	121.75	127.60	126.90	131.29
81	82	83	84	85	86
Tl	Pb	Bi	Po	At	Rn
20+.38	207.2	208.98	(209)	(210)	(222)

58	59	60	61	62	63	,	65	6	67	68	69	70	I
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	D	Ho	Er	Tm	$\mathbf{Y b}$	Lu
1+0.12	$1+0.91$	1+4.2+	$1+6.92$	150.36	151.97	157.25	158.93	162.50	16.93	167.26	168.93	173.0	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
T	P	U	N	P	m	-		Cf	Es	Fm	Md	No	r
$232.0+$	231.04	238.03	237.05	(2H)	(23+)	(2+7)	247	(251)	(252)	(257)	(258)	(259)	(260)

Page 10 of 10

